Quantitative Regular Expressions for Arrhythmia Detection Algorithms
نویسندگان
چکیده
Motivated by the problem of verifying the correctness of arrhythmia-detection algorithms, we present a formalization of these algorithms in the language of Quantitative Regular Expressions. QREs are a flexible formal language for specifying complex numerical queries over data streams, with provable runtime and memory consumption guarantees. The medical-device algorithms of interest include peak detection (where a peak in a cardiac signal indicates a heartbeat) and various discriminators, each of which uses a feature of the cardiac signal to distinguish fatal from non-fatal arrhythmias. Expressing these algorithms’ desired output in current temporal logics, and implementing them via monitor synthesis, is cumbersome, error-prone, computationally expensive, and sometimes infeasible. In contrast, we show that a range of peak detectors (in both the time and wavelet domains) and various discriminators at the heart of today’s arrhythmia-detection devices are easily expressible in QREs. The fact that one formalism (QREs) is used to describe the desired end-to-end operation of an arrhythmia detector opens the way to formal analysis and rigorous testing of these detectors’ correctness and performance. Such analysis could alleviate the regulatory burden on device developers when modifying their algorithms. The performance of the peak-detection QREs is demonstrated by running them on real patient data, on which they yield results on par with those provided by a cardiologist.
منابع مشابه
Regular Expressions for Irregular Rhythms
Motivated by the desire to verify the correctness of algorithms for arrhythmia discrimination used in cardiac medical devices, we present a general wavelet-based characterization of peaks (local maxima and minima) that occur in cardiac electrograms, along with two peak-detection algorithms based on this characterization. Peak detection (PD) is a common signal-processing task, as peaks indicate ...
متن کاملDerivatives of Quantitative Regular Expressions
Quantitative regular expressions (QREs) have been recently proposed as a high-level declarative language for specifying complex numerical queries over data streams in a modular way. QREs have appealing theoretical properties, and each QRE can be compiled into an efficient streaming algorithm for its evaluation. In this paper, we generalize the notion of Brzozowski derivatives for classical regu...
متن کاملThe Object Detection Efficiency in Synthetic Aperture Radar Systems
The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...
متن کاملAlgorithms for Learning Regular Expressions
We describe algorithms that directly infer regular expressions from positive data and characterize the regular language classes that can be learned this way.
متن کاملComputer Science at Kent Regular expression matching with input compression and next state prediction
Automata based regular expression matching can often require large amounts of memory for its state transition tables, particularly when matching multiple complex regular expressions with the same automata. For systems with limited memory resources it is common to try to compress the state transition tables. One technique called row displacement with state marking does this by identifying defaul...
متن کامل